•  
  •  
 

Section

Mathematics and Computational Sciences

Abstract

Portfolio can be defined as a collection of investments. Portfolio optimization usually is about maximizing expected return and/or minimising risk of a portfolio. The mean-variance model makes simplifying assumptions to solve portfolio optimization problem. Presence of realistic constraints leads to a significant different and complex problem. Also, the optimal solution under realistic constraints cannot always be derived from the solution for the frictionless market. The heuristic algorithms are alternative approaches to solve the extended problem. In this research, a heuristic algorithm is presented and improved for higher efficiency and speed. It is a hill climbing algorithm to tackle the extended portfolio optimization problem. The improved algorithm is Hill Climbing Simple–with Reducing Thresh-hold Percentage, named HC-S-R. It is applied in standard portfolio optimization problem and benchmarked with the quadratic programing method and the Threshold Accepting algorithm, a well-known heuristic algorithm for portfolio optimization problem. The results are also compared with its original algorithm HC-S. HC-S-R proves to be a lot faster than HC-S and TA and more effective and efficient than TA. Keywords: Portfolio optimization, Hill climbing algorithm, Threshold percentage, Reducing sequence, Threshold Acceptance algorithm.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.