•  
  •  
 

Section

Mathematics and Computational Sciences

Abstract

Bayesian estimations have the advantages of taking into account the uncertainty of all parameter estimates which allows virtually the use of vague priors. This study focused on determining the quantile range at which optimal hyperparameter of normally distributed data with vague information could be obtained in Bayesian estimation of linear regression models. A Monte Carlo simulation approach was used to generate a sample size of 200 data-set. Observation precisions and posterior precisions were estimated from the regression output to determine the posterior means estimate for each model to derive the new dependent variables. The variances were divided into 10 equal parts to obtain the hyperparameters of the prior distribution. Average absolute deviation for model selection was used to validate the adequacy of each model. The study revealed the optimal hyperparameters located at 5th and 7th deciles. The research simplified the process of selecting the hyperparameters of prior distribution from the data with vague information in empirical Bayesian inferences. Keywords: Optimal Hyperparameters, Quantile Ranges, Bayesian Estimation, Vague prior.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.